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The idea behind tangles

This chapter o↵ers three introductions to the concept and purpose of
tangles: one for the natural sciences, one for the social sciences, and
one for data science. These introductions can be read independently,
and readers may choose any one of them as an entry point to this book,
according to their own background.

However as all three introductions illuminate the same concept,
readers from any background are likely also to benefit from the other
two viewpoints. Indeed, while each of them may seem plausible enough
on its own, they are rather di↵erent. The fact that they nevertheless
describe the same concept, that of a tangle, illustrates better than any
abstract discussion the breadth of this concept and its potential appli-
cations, including in fields not even touched upon here. Moreover, even
in a given context where one of the three viewpoints seems more fitting
than the other two, switching to one of those deliberately for a moment
is likely to add insight that would otherwise be easy to miss.

1.1 Tangles in the natural sciences

Suppose we are trying to establish a possible common cause of some set
of similar phenomena. To facilitate this, we may design a series of mea-
surements to test various di↵erent aspects of each of these phenomena.1

If we already have an overview of all the potential causes, we might
try to design these measurements so that each potential cause would yield
a list of expected readings, one for each of these di↵erent measurements,
so that di↵erent potential causes di↵er in at least one measurement.
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Then only the true cause would be compatible with all the readings we
get from our actual measurements performed on the phenomena we are
trying to explain.

In our less-than-ideal world, it may not quite work like this. For a
start, we might simply not be aware of all the potential causes – not to
mention the fundamental issue of what, if anything, is a ‘cause’. Similar
phenomena may have di↵erent causes, or no single cause. Even poten-
tially single causes need not be mutually exclusive but may be able to
co-exist; then we shall not be able to design experiments that will exclude
all but one of them with certainty. And finally, measurements may be
corrupted, but we may not know which ones were.

We usually try to compensate for this by building in some redun-
dancy: perhaps by taking more measurements, or by measuring more
di↵erent aspects. Or we might resign ourselves to making claims only in
probability – which will protect us from being disproved by any single
event, but which may also increase immensely the overheads needed to
justify precise quantitative assertions (of probabilities).

Tangles o↵er a structural, rather than probabilistic, way to af-
ford the redundancy needed in such cases. They allow us to
derive predictions from our data as we would expect them from
identifying causes, while sidestepping the philosophical issue of
what constitutes a cause.

The idea, at a high level, is to replace the search for ‘causes’ with
a search for something we can observe directly: structure in our data
that occurs as a result of the presence of an underlying cause – a kind
of structural footprint in observable data that we find whenever phe-
nomena have some common cause, no matter what that cause may be.
Di↵erent causes have di↵erent footprints, but all causes have the same
structural type of footprint: tangles. The idea is that the structural
footprint of each particular cause should carry enough information to
replace any reference in the scientific process to that cause, e.g. in mak-
ing predictions, with a reference to this structure, the tangle that reflects
this cause in observable data. If desired, we may think of tangles as an
extensional definition of ‘cause’ that achieves precision and observability
at the expense of the intuitive appeal of our informal notion of ‘cause’.

In our generic example, a tangle would be a set of hypothetical
readings for the measurements we have performed on our phenomena,
a set of one possible reading per measurement. It would not be just any
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such set, but one that is typical for the actual readings we got on our
phenomena:

A tangle is a typical set of measurement readings, one for each
measurement, such as a set of readings due to a particular cause.

It may happen that one, or several, of our phenomena produced
exactly this set of readings. But it can also happen that an ‘abstract’
set of readings is typical, and hence a tangle, for our collection of phe-
nomena without occurring exactly in any one of them. This might be
the case, for example, for a set ⌧ of measurement readings produced by
some given cause under laboratory conditions. This set of readings will
be typical for our phenomena if they were indeed triggered by this cause,
even if none of them produced exactly ⌧ under our measurements.

What, then, does it mean that ⌧ is typical for our phenomena? We
shall address this question in detail below. Its most important aspect,
however, is that our definition of ‘typical’ will not stipulate the exist-
ence of some common cause for our phenomena. It will be such that a
single cause, or some fixed combination of causes, will produce a set of
readings that satisfies our definition of ‘typical’. But the definition itself
will refer only to our data: the measurement readings we obtained on
the phenomena we are seeking to explain. This will allow us to identify
tangles directly in the data, without guessing at possible causes, and then
from these tangles infer that, perhaps, some known cause is present.

Just as a set of similar phenomena can have several possible causes,
our measurements might indicate the presence of a single tangle, or sev-
eral, or none. Given any one of these tangles, we may try to find a
common cause for this typical set of readings, or choose not to try. If
there is a common cause for su�ciently many of the phenomena inves-
tigated, it will show up as a tangle and can thus be identified.

But there can also be tangles that cannot, or not yet, be ‘explained’
by a common cause. Such tangles are just as substantial, and potentially
useful, as those that can be labelled by a known common cause; indeed
perhaps more so, since the absence of an obvious common cause may
have left them unidentified in the past. In this sense, identifying tangles
in large sets of similar phenomena can lead to the discovery of new meta-
phenomena that had previously gone unnoticed and might, henceforth,
be interpreted as a ‘cause’ for the group of phenomena that gave rise to
this tangle.
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So when is a set ⌧ of hypothetical measurement readings deemed
‘typical’ for the actual measurements taken on our phenomena, and is
therefore a tangle? There are two notions of ‘typical’ that are important
in tangle theory: a strong one that is satisfied by many tangles but not
required in their definition, and a weaker one that is required in their de-
finition, and which su�ces to establish the main theorems about tangles.

The strong notion, which we might call popularity-based , is that
our set of phenomena has a subset X – not too small – such that,
for every measurement made, some healthy majority – more than two
thirds – of the phenomena in X yielded the reading specified by ⌧ for
that measurement.2 Note that these may be di↵erent two thirds of X for
di↵erent measurements: every phenomenon, even one inX, may for some
measurements produce readings di↵erent from the readings that ⌧ speci-
fies for those measurements. But every entry in ⌧ reflects some aspect of
what we measured that many of the phenomena in X have in common,
and is in this sense typical for all the phenomena in X. Clearly, there can
be several such tangles ⌧ , witnessed by di↵erent sets X of phenomena.

The weaker notion of when our set ⌧ of hypothetical measurement
readings is ‘typical’ for the actual readings obtained from our measure-
ments, and hence constitutes a tangle, might be called consistency-based .
It requires of ⌧ that, for every set of up to three of our measurements, at
least one of the phenomena we measured gave the readings specified by ⌧
for these three phenomena.3 Note that if ⌧ is typical in the popularity-
based sense it will also be typical in this consistency-based sense,4 but
not conversely.

We often strengthen these consistency requirements of a tangle by
asking a little more: that, for some ‘agreement parameter’ n we chose
for the given context, every three measurement readings specified by ⌧
must be shared not only by one of the phenomena we measured but by at
least n of them. Such sets of hypothetical measurement readings, one for
every measurement, will thus be even more typical for our phenomena,
the more so the larger n is.

All three of these notions of ‘typical’ are robust against small
changes in our data. This makes tangles well suited to ‘fuzzy’ data with
the kind of inherent variation indicated earlier. But the definition of tan-
gles will be completely precise: a formal description of the structure of
our data including any aspects of its fuzziness. We shall therefore be able
to use tangles in rigorous mathematical analysis of our data as it comes.
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1.2 Tangles in the social sciences

Suppose we run a survey S of political questions on a population P of a
thousand people. If there exists a group of, say, a hundred like-minded
people among these, there should be a way of answering all the questions
in S that is typical for those one hundred people: that, after all, is what
‘like-minded’ means. Let us write X for this set of a hundred people,
and ⌧ for the way of answering S that is typical for them. Thus, ⌧ is
one typical set of answers to all the questions in S.

Let us try to quantify this last assertion, that our answer set ⌧ is
typical for the people in X. One way to do this is to require that, for
every question s in S, some healthy majority – more than two thirds,
say – of the people in X agree with the answer to s that ⌧ specifies. Note
that which two thirds of X these are may di↵er for di↵erent questions s.
Every answer specified by ⌧ reflects the views of a large majority of the
people in X, and is typical for all of X in this way. But we may not be
able to pin down anyone in P , let alone two thirds of the people in X,
that answered all of S as specified by ⌧ .

We shall call such a complete collection ⌧ of views that is typical
for some of the people in P a mindset tangle. There may be more than
one mindset tangle for S, or none, just as there may be several groups
of like-minded people in P , or none, each with their own typical way of
answering S.

Traditionally, mindsets are found intuitively: they are first guessed,
and only then established by quantitative evidence, perhaps even from
a survey designed specifically to test them. Mindset tangles can do
that, too. For example, we might feel that there is a ‘socialist’ way �
of answering our survey S. We could write these answers down without
looking at the actual returns for S, just appealing to our intuitive notion
of what a ‘socialist’ way to answer S would be. To test our intuition that
this is indeed a typical mindset for the people in P we might then check
whether, in the actual returns for S we received from the people in P ,
we can find a sizeable subset X of P as earlier for this particular ⌧ = �.

But tangles can also do the converse: we can identify mindsets, as
tangles, in the returns for S without having to guess their answers first:

Tangles o↵er a precise and quantitative way to test for suspect-
ed mindsets in a population and to discover unknown ones.

For example, tangle analysis of political polls in the UK in the years
before the Brexit referendum might have detected the existence of an
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unknown mindset of voters across the familiar political spectrum that
helped establish the surprise majority for Brexit in 2016. And similarly
in the US with the MAGA5 mindset before 2016, or that of conservative
Greens in Europe in the early 1970s. Tangles can identify previously
unknown patterns of coherent views or behaviour.

1.3 Tangles in data science

One of the most basic, and at the same time most elusive, tasks in the
analysis of big datasets is clustering : given a large set of points in some
space, one seeks to identify within this set a small number of subsets,
called ‘clusters’, of points that are in some sense similar. If we visualize
similarity as distance, clusters will be sets of points that are, somehow,
close to each other.

Figure 1.1 shows a simple example of points in the plane. In the
picture on the left we can clearly see four clusters. Or can we? If a cluster
is a set of points that are pairwise close, and the two points shown in
green in the right half of the picture lie in the same cluster, should not
the two red points – which are much closer – lie in a common cluster too?

FIGURE 1.1. Four clusters?

For reasons such as this, and other more subtle ones, there is no uni-
versal notion of cluster in data science. In our example there are ‘clearly’
four clusters – but it is hard to come up with an abstract definition of
‘cluster’ that is satisfied by exactly four sets of points in Figure 1.1, let
alone four sets resembling those that we intuitively see as clusters.

Tangles seek to describe clusters in an entirely di↵erent manner. Not
by dividing the dataset into subsets in some clever new way, but without
dividing it up at all: although there will be four tangles in our picture,
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these will not be defined as sets of points. In particular, questions such
as whether the green points should end up in the same cluster but the
red points, perhaps, should not, do not even arise.

By avoiding the issue of assigning points to clusters altogether, tan-
gles can be precise without making arbitrary and unwarranted choices:

Tangles o↵er a precise, if indirect, way to identify fuzzy clusters.

Rather than looking for dense clouds of data points, tangles look
for the converse: for obvious ‘bottlenecks’ at which the dataset naturally
splits in two. We call ways of splitting our dataset into two disjoint sub-
sets partitions of the set, and the two subsets the sides of the partition.

Figure 1.2 shows three partitions of our point set at bottlenecks.6

Now, whatever formal definition of ‘cluster’ one might choose to work
with, one thing will be clear: no bottleneck partition will divide any
cluster roughly in half, since that should violate either the definition of
a cluster or that of a bottleneck. For example, given one of the three
bottlenecks in our picture, and one of the four obvious clusters, we might
argue over a few points about whether they should count as belonging
to that cluster or not, or on which side of the bottleneck they lie. But
for almost all the points in our picture these questions will have a clear
answer once we consider a fixed cluster and a fixed bottleneck, no matter
how exactly these may be defined.

Put another way, whichever precise definition of cluster (and of bot-
tleneck) someone chose to work with, each of our four intuitive clusters
would liemostly on the same side of any partition at a bottleneck. Let us
then say that the cluster orients this partition towards the side on which
most of it lies. Figure 1.2 shows how the central cluster, no matter how
it was defined precisely, orients the partitions at the three bottlenecks in

FIGURE 1.2. Orienting the bottlenecks consistently towards the
central cluster.
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this way. Each of the four clusters assigns its own set of arrows to these
same three partitions, and the central cluster orients them all inwards.

Note that assignments of arrows to bottlenecks that come from one
of the four clusters in this way are not arbitrary: the arrows are consis-
tent in that they all point roughly the same way, towards that cluster.

The key idea behind tangles, now, is to keep for each cluster exactly
this information – how it orients all the bottleneck partitions – and to
forget everything else (such as which points might belong to it). More
precisely, tangles will be defined as such abstract objects: as consistent
orientations of all the bottleneck partitions in a data set.

In this way, tangles will extract from the various explicit ways of
defining clusters as point sets something like their common essence. Tan-
gles will be robust against small changes in the data, just as they are
robust against small changes in any explicit definition of point clusters
that we might use to specify them. But their definition as such will
be perfectly precise, and involve no arbitrary choices of the kind one
invariably has to make when one tries to define clusters as sets of points.

To make this approach work, of course, one has to define formally
what the ‘bottleneck partitions’ of a given dataset are, and when an ori-
entation of all these bottleneck partitions is deemed to be ‘consistent’. In
our example of Figure 1.2 we defined both these with reference to those
four intuitive clusters. Indeed, as ‘bottleneck partitions’ we took those
that split the set of points where this appeared narrow in the picture,
which is just another way of saying that we took precisely those parti-
tions that did not cut right through any of the four intuitive clusters;
and we called a way of orienting these three partitions ‘consistent’ if the
arrows indicating this pointed towards one of those intuitive clusters.

If we are serious about defining tangles as abstract objects, however,
in a bid to bypass the di�culties inherent in trying to define clusters as
point sets, then this would beg the question. The challenge is to define
both bottleneck partitions and consistency of their orientations without
reference to any perceived cluster, however vaguely defined. Only once
we have achieved this can we ‘define’ clusters not explicitly as point sets
but indirectly as tangles, as is our aim.7

To make this challenge a little clearer, let us look at a slightly modi-
fied example. Figure 1.3 again shows four clusters with three bottlenecks.
This time, one of these has an elongated shape, like a handle. As before,
there are clearly four clusters, yet there is no obvious way to define them
directly as point sets.
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FIGURE 1.3. Three bottlenecks, but many bottleneck partitions,
all oriented consistently by the central cluster.

But now there appears to be a problem with our indirect approach
too. Intuitively, we would like to orient those bottlenecks; formally we
can orient partitions (at bottlenecks), by choosing one of their two sides;
but now there are many partitions ‘at’ the same bottleneck of the handle.
Which of these shall we choose to represent that bottleneck?

Since there is no canonical way to make this choice in the abstract,
we shall simply consider all those partitions at once: we shall work with
‘bottleneck partitions’ directly, and find ways to define these formally,
but we shall abandon our initial aim to formalize the more intuitive idea
of bottlenecks themselves. Our notion of consistency, then, will have to
apply also to how we orient partitions at the same bottleneck.

Let us see how this can work in Figure 1.3. We would like there to
be four clusters, no more, so only four of the many ways of orienting all
its bottleneck partitions should count as ‘consistent’. In the picture this
can be achieved if, and only if, we can ensure that consistent orientations
of partitions at the same bottleneck always point the same way.8

In our example, the orientations of bottleneck partitions induced by
one of the four obvious clusters satisfy this nicely: any given cluster will
either lie mostly on the left of every partition at the handle, or mostly
on the right of every partition at the handle. Hence, the arrows defined
at these partitions by any of our four clusters will either all point to the
left, or they will all point to the right, and thus be intuitively consistent.

The challenge remains to come up with a formal definition of con-
sistency as the basis for our notion of tangle that bears this out: one
that does not refer to any perceived clusters, but which in the above ex-
ample will orient all the partitions at the handle in the same direction.
Chapter 2 shows how this can be done.

The task of identifying bottleneck partitions in a given dataset with-
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out reference to intuitively perceived clusters will be our topic later, in
Chapter 9. Until then we shall usually assume a set of bottleneck parti-
tions as given.

Once these two tasks are achieved, however, we shall have a defi-
nition of tangle which, while being entirely formal and precise, will be
able to capture ‘fuzzy’ clusters in a robust way that does not require us
to allocate points to clusters.

1.4 On the use of mathematical language in this book

In order to make tangles applicable in such diverse contexts as discussed
in this chapter, the language in which we describe them can be based
only on what all these contexts have in common. The basic language of
modern mathematics is ideally suited to this. It uses only a few funda-
mental terms: sets and their elements, intersections and unions of sets,
perhaps functions that assign to each element of one set some element
of another set. And that’s all we shall need for the start.

Since this basic mathematical language is so simple, it will be easy
to ensure that all definitions and statements made in it will be reliable:
they can be taken out of context, referred back to from any point later
in the book, and should still stand up to scrutiny. Readers from outside
mathematics may find this unusual, and are especially encouraged to rely
on it: should they ever find themselves unsure of what some passage later
in the book is intended to mean, the solution is likely not just to look out
for redundancy near that passage, hoping it is repeated there in slightly
di↵erent terms, but to look up the definitions of the terms involved.

Another important aspect of mathematical use of language is that,
while all notions are precisely defined, the words we use to denote them
are usually borrowed from everyday language – like ‘tangle’. The reason
is that inventing a new word for every new notion would soon make
any text unreadable: there are just too many new notions invented all
the time. To help with readability, moreover, we try to choose not just
any ordinary word for some given new notion, but one that our memory
can easily associate with it: a word whose everyday meaning resembles,
a little at least, that new mathematical notion. When such a word is
then encountered later in the text, it should already be flagged in the
reader’s mind as having a technical meaning, and it will usually be that
meaning, not its everyday meaning, that is meant.
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Still, there will remain cases where such ordinary words are still used
with their ordinary meaning, and the reader will have to guess from the
context when this is the case. A good example is the word ‘typical’, to
which we assigned a technical meaning in Section 1.1 but which we used
naively again at the start of Section 1.2. This was necessary, because the
later section was meant to be readable as an entry point to this book.
But any reader that happened to have read the earlier section first had
to guess from the context at the start of Section 1.2 that ‘typical’ is used
there with its everyday meaning.

While we usually hijack everyday words for mathematical notions,
individual mathematical objects are often denoted by strange-looking
symbols. These are chosen to help the reader remember how these ob-
jects relate to others, or how they might be interpreted when tangles are
applied. For example, if we chose to denote a bottleneck partition as dis-
cussed in Section 1.3 by the letter s, it will be natural later to denote its
two orientations as !s and  s . This is innocuous enough. But remember
that s, a partition of some dataset V, is a pair of subsets of V, its two
sides. Now it may happen in our narrative that one of these sides occurs
first, and that we wish to consider s only because it has this subset of V
as a side. How, then, shall we refer to this side before s is mentioned?

One way to do this would be to introduce that side as a set denoted
by some generic symbol for sets, such as A, then define B as its comple-
ment V rA, introduce s as the set {A,B}, note that this is a partition
of V with sides A and B, remember that orienting s means picking one of
its sides, and finally define !s as the ‘orientation’ A of s. Apart from the
fact that this last step looks notationally odd, introducing the letters A
and B is also a lot of notational clutter if all we ever need is s and its two
orientations. In such cases we may therefore start our story by giving
some interesting subset of V the name !s : just like that, out of the blue.

To non-mathematicians this may look strange, perhaps a little terri-
fying. But probably only because they suspect some hidden information
in this notation which they think they do not know. When this happens,
there is a very simple way to keep ones head: to rely on what exactly
the text says, and not to worry about the notation. If ~S is introduced as
an arbitrary finite set, then that’s what it is: a set, nothing special. The
reason for calling it ~S rather than A, say, may become apparent later,9

but it will help not to speculate about this too much too early.

The whole point of using mathematical language is that its notions
are not overloaded with meaning developed through the centuries, and
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perhaps subject to debate. Starting our formal description in Part III
of what tangles are with just arbitrary sets, their elements and so on,
we shall have a clean slate that will be filled only carefully and slowly.
Every statement in the text should be understandable, if necessary, on
the basis of just the few things said formally before in Part III, so these
can be checked if in doubt.

Yet human readers are not machines, and sometimes it helps to have
an intuition, however vague, of what some formal notions are intended
to describe. Our formal development of tangle terminology will therefore
be accompanied by plenty of informal examples.

At the beginning, in Chapter 2, the narrative will in fact be almost
entirely in terms of examples. However, in order to become acquainted
early with the symbols to be used later in our more formal discourse,
we shall introduce these symbols here already: not in a mathematically
rigorous way as abstract sets, but naively as sets of ‘things’ that are
not mathematical objects. As the book progresses, I shall make more of
an e↵ort to keep the levels of formal definitions and of examples visibly
separate: so that examples are not formally relied on later, while formal
definitions that are meant to be relied on can be easily be identified.


